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An Original Approach to Mode Converter
Optimum Design

Eric Lunéville, Jean-Michel Krieg, and Eric Giguet

Abstract—An original method of shape optimization has been
developed to improve high-power high-frequency transmission-
lines’ performances. This method is based on the coupling co-
efficients equations, for which general expressions are given.
It makes use of numerical methods such as steepest descent
associated to adjoint state technique. The results obtained on
several types of components demonstrate the pertinence of this
method.

Index Terms—Coupled mode analysis, optimization methods,
transmission lines.

I. INTRODUCTION

H IGH-FREQUENCY high-level RF power is necessary
for electron cyclotron applications (plasma heating and

diagnostics) in thermonuclear fusion experiments. To gen-
erate such a wave, gyrotron oscillators (tubes which can
deliver powers greater than 1-MW continuous wave (CW) at
frequencies above 100 GHz) are the most commonly used
sources. The power then propagates to the application (toka-
mak) through a transmission line, which must be oversized to
avoid breakdowns and to minimize ohmic losses. The first goal
of the line is to transform the mode generated in the gyrotron
cavity, usually a high-order mode ( , , ,
etc.) to obtain high-power levels, into another mode more
suitable for the application, like the mode propagating
in a corrugated waveguide and having the advantages of low
ohmic losses and of a quasi-Gaussian radiation pattern. This
can be done through a set of passive components called
mode converters, which are actually waveguides deformed
according to specific laws. Among the other components of
a transmission line, one can list tapers, allowing a change
of the line radius (e.g., to optimize the conversion from one
mode to another) and bends used to change the wave direction
of propagation. All these components must satisfy two main
criteria: they must be as efficient as possible (more than 95%),
for the useful power to be as high as possible, and they must
be as short as possible to reduce the dimensions of the set
“gyrotron-transmission line.”

The most commonly used components are: 1) smooth tapers;
2) sinusoidal converters (i.e., converters where the radius
is a sinusoidal function of the longitudinal axis) which can
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transform a mode into a one (where and
represent either a TE or TM mode); 3) helical converters

(the radius of which not only depends on the longitudinal axis,
but also on the asimuthal angle) converting modes into

ones; and 4) serpentine converters, where the radius is
constant, but the longitudinal axis is curved, which allow the
same kind of conversion as the previous ones. The amplitudes
of the modes propagating in such structures are solutions of
a set of first-order differential equations. A suitable efficiency
is obtained by varying various parameters, like the slope of
the components (tapers), their length, and the amplitude and
period of their deformations (converters), to keep the level of
the spurious modes as low as possible [1]–[7].

Nevertheless, it is not always possible when using such
techniques to find the optimal point in terms of efficiency
of length. We have developed a method based on shape
optimization techniques to increase the efficiency and reduce
the length of transmission lines—and this in an automatic way.

The Section II of this paper deals with the physical model
of mode conversion, leading to the resolution of a set of
differential equations. The material of this section is partly
available in different papers [8]–[11]. We found it necessary to
review the final results in the two cases of radius and curvature
longitudinal deformations.

In the Section III, we detail the different techniques used to
optimize the shape with regard to the conversion efficiency.
The main ideas are: 1) cubic spline representation of the
shape; 2) conservative Crank–Nicolson scheme to solve the
differential system; 3) cost function taking into account the
conversion efficiency and other parameters; and 4) adjoint
state equations for fast computation of the gradient used in
a steepest descent algorithm.

Section IV summarizes the main experimental results ob-
tained on several tested components.

II. WALL DEFORMATIONS–COUPLING EQUATIONS

The field components of an electromagnetic wave
propagating in a circular waveguide can be written as

(1)

(2)
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The particular waves (represented by the index) such as
are called TE modes, while those (index) such as
are called TM modes. In the previous equations, the

scalar functions and are assumed to vary as

and the vectors to be normalized on the
cross-section by

if the modes and represent both TE or
both TM modes, these integrals being null otherwise.

The actual values of these vectors can be determined by
solving Maxwell’s equations and

in the case where the wave propagating in the guide
is a pure mode.

1) TE Mode: Let us introduce a scalar function
defined by: ; . The condition
of normality of the electric field on the wall leads to
for (where is the radius of the waveguide). Using the
normalization conditions, one can finally write

where is the th root of .
2) TM Mode: We introduce the function defined

by: ; . The value of the electric
field on the wall and the normalization conditions lead to

where is the th root of .
As long as the wavelength is purely cylindrical, the de-

composition given by (1) and (2) remains the same. Let us
now consider a slightly deformed waveguide, i.e., such as its
radius varies with and , or its axis is curved (even if
the radius is constant). Theoretically, because of the change in
the normal to the waveguide, the previously given field values
are not valid. Nevertheless, if the deformations remain smooth
enough, one can consider that the wave propagating can still
be represented as a set of TE and TM modes even if the
composition varies while it propagates, that is to say that the
different modes can be coupled to each other. In this section
the coupling equations which must be taken into account in
two particular cases, variation of the radius and of the axis
curvature will be summarized.

A. Variation of the Radius

The coupling equations have first been developed in the par-
ticular case where the radius depends only on the longitudinal
coordinate . As stated in [8] and [9], in the case of small
variations they can be written as

In this set of first-order differential equations, repre-
sents the amplitude of the forward (backward) component of
the different modes. These amplitudes are derived fromand

by the relations

with for TE modes and for TM modes.
The indexes and represent TE modes,and TM modes.

The coupling coefficient between two modes is nonnull if, and
only if, they have the same azimuthal index. In that occurrence,
and depending on the type of modes, the coefficients are given
by

with azimuthal index of the modes:

th root of
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th root of

Some applications require conversion of one mode into another
one with a different azimuthal index. This can be done through
a component with radial variations in bothand . The most
commonly used deformation is given by

where is the mean radius andmust be equal in absolute
value to the difference between the two azimuthal indexes.
The coupling coefficients to be used in this case have been
determined, particularly by Mourier [12].

B. Serpentine Converter–Morgan Coefficients

Another way to couple modes with different azimuthal in-
dexes consists in the use of a so-called “serpentine” converter.
In such a component, the radius remains constant, but the axis
of propagation is deformed. The coupling equations to be taken
into account in this case have been developed by Morgan [11].

The electromagnetic field of a wave propagating in such a
guide can be calculated using the coordinates system ,
where is the distance measured along the axis and
the polar coordinates in a plane perpendicular toand the
origin of which is on this axis. In the following, the radius of
curvature of will be noted .

Developing Maxwell’s equations in this coordinate system
finally leads [in the particular case where the curvature is small
(i.e., )] to the following first-order coupling
equations (and still represent TE mode,and TM modes):

The coupling coefficients are given by the following:

Replacing the indexes, , , and , respectively, by the double
indexes , , , and , one finds the following:

if and

if and

if

if and

if and

if

where

if and or and

if and or

and

otherwise

if or and

otherwise

if or and

otherwise

and or

and

otherwise.

Using these coupling equations, one can fine the equations
in and using the relations and

.
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III. OPTIMUM DESIGN OFWAVEGUIDES

A. A Class of Optimum Design Problem

As we have seen in the previous section, the mode-coupling
model of electromagnetic waves in axisymetric guides or
“serpentine” guides leads to a one-dimensional differential
system that we state in general form as follows:

(3)

(4)

where is the length of the guide, is the propagation axis

(respectively, ) being the complex vector of the
amplitudes of the forward modes (respectively, backward
modes)

, , , are, respectively, the matrices of
coupling coefficients between forward and backward waves,
the real function is the design parameter of the guide
(for instance, is the radius of the section of an axisymetric
guide or the curvature of the axis of a serpentine guide),
is the input vector mode amplitudes.

The output condition (4) means that backward modes do
not come from right infinity. For the sake of simplicity, in this
paper, we neglect the effects of backward modes. Therefore,
we assume , and we deal with the model
(3) in the following.

Knowing the input mode , we want to generate at
only one given mode (called ). As the matrix is anti-
Hermitian ( , where represents the conjugated
matrix of ), the system (3) is conservative, i.e.,

for every

where is the norm on the complex space.
Let us now introduce the maximization problem

(5)

where is the cost function, represents
the th component of the vector and is the set of
constraints fulfilled by the design function.

It is straightforward to interpret this problem in terms of a
maximization of energy efficiency, and the best one is reached
when

We take two kinds of constraints into account. First of all,
structural constraints are expressed as follows:

(6)

These constraints specify geometric properties of guides
(for instance, we have for axisymetric converters,

for tapers, and for serpentine
waveguides) and ensure that two successive guides will fit
together. The treatment of these constraints will be detailed in
the next section.

Secondly, we consider some quality constraints:

on the mode exchange energy:

where is a given function and , are plus and minus
limits on the design parameter. In some circumstances, these
constraints do not allow the guide to be to much oversized.

on the mode exchange energy:

or

where , are minus and plus energy limits for the mode
. Such a constraint allows a limit on the generation or the

attenuation of the mode.
One can treat these quality constraints by an exterior penalty

method of the cost function. For instance, to take the first
quality constraints into account, the following
penalized cost function is introduced:

with

where the function is defined by

if
if

For the constraint to work well, the coefficient must be
chosen carefully.

In the following, in order to simplify this paper, we will
omit these quality constraints. The dependence of the cou-
pling matrices on the design parameter is generally strongly
nonlinear. This means that the maximization problem (5) is
not convex. Thus, no result of existence and uniqueness of (5)
can be derived. The only result we can state is related to the
existence of local maxima characterized by the Euler condition

B. Approximated Optimum Design Problem

The design parameter and (3) have to be discretized. We
use a cubic spline approximation of the design parameter and
a modified Crank–Nicolson scheme to discretize the equation.

Let us consider the following cubic spline approximation on
a grid of points such as and :

(7)

where is a cubic polynomial function and is the
indicatrix function in the interval (i.e., the function defined
by if otherwise).

From spline theory [13], there is an unique spline function
satisfying the boundary conditions

and
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Therefore, to take the constraints given by (6) into account,
it is sufficient to choose as the unknown parameter the real
vector

associated to the spline function given by (7). This choice
allows elimination of (6). It is of interest to note that the
function is linear.

The standard Crank–Nicolson scheme [14] is not conserva-
tive. Thus, we use the following modified scheme on a regular
grid with :

(8)

with .
The scheme (8) is conservative, implicit, unconditionally

stable and of second order. Because of the oscillating solution
of (3), the conservation of the scheme appears to be essential.
With these discretizations, the approximated optimum design
problem has the following form:

with (9)

and becomes a standard finite dimension maximization prob-
lem.

C. Maximization Algorithms

The finite dimensional maximization problem (9) does not
have any constraints. Thus, classical algorithms of ascent like
the steepest ascent or Polak–Ribiere method [15] may be used
to find local maxima of the cost function characterized by:

. For instance, the steepest ascent algorithm is

given
(10)

where is a step of ascent which is estimated by classical
rules like dichotomy or the Goldstein method [15].

Remark: More efficient algorithms like quasi-Newton
methods (e.g., BFGS methods [15]) are not recommended
because of the strong nonconvexity of the problem.

The key point of optimization computation is the evaluation
of the gradient. To make it as fast as possible, we use the well-
known method based on the adjoint state. Let us explain it in
the continuous case, which is less intricate than the discrete
one. First of all, we note the derivative of
versus the th design parameter. It is obvious that is a
solution of the following differential system:

Moreover, we have

where represents the Hermitian product between
and .

Let us introduce the adjoint state vector, solution of the
following backward differential system:

with .
Taking into account the two previous differential systems,

the equality

leads to

It is of interest to note that the gradient evaluation requires
only one resolution of a backward differential system. This
must be compared with the resolutions of the forward
differential system in .

In the discrete case, similar, but more intricate calculations
lead to

with , and , given by the
adjoint scheme

where . It appears that the discrete
adjoint equation is not an obvious discretization of the contin-
uous one. The derivatives are easy to obtain because
the spline operator is linear and the dependence
of on is explicit.

D. Some Remarks on the Method

The strong nonconvexity of the cost functionis illustrated
in Fig. 1 showing its variations as a function of the stepin
a given direction

One can see many maxima. Thus, there is no guarantee that
the ascent method (10) gives a good solution to the problem
(9), that is to say, a solution with the best possible efficiency.

Nevertheless, numerical experiments show that in most
cases, the solution is very good since the initial parameter
does not privilege any situation. Moreover, as the function

oscillates less and less since the dimension of the design
parameter decreases, a continuation method based on the
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Fig. 1. Nonconvexity of the cost functionJ .

TABLE I

increase of the spline number of points allows a very good
optimal solution in any realistic case. In order to speed up the
numerical method, it is also possible to increase the number
of modes (up to the cutoff) during the iterative process.

In this section, we have described the main ideas which
have contributed to make an effective computational software
of optimized waveguides. This software allows us to take
into account ohmic losses, which are modelized with complex
propagation constants. Moreover, sensitivities of waveguides
to the design parameter perturbations or frequency perturba-
tions can be estimated.

IV. EXPERIMENTAL RESULTS

Three components have been designed and tested to char-
acterize the operability of this method, in the various cases
corresponding to the different coupling coefficients sets (see
Table I). In the case of radius variations (Unger coefficients),
a to mode converter, tapering from 27.8- to 38.1-
mm diameter was designed to work at 100 GHz with 99.8% of
mode purity. In the case of asymmetrical modes, an ultrashort

waveguide, tapering from 63.5- to 20-mm-diameter taper
was designed for operation at 110 GHz with 99% of mode
purity. In the case of Morgan coefficients, a to
mode 20-mm-diameter converter was designed at 110 GHz
for a mode purity of 99.2%.

A. 100-GHz Taper-Converter [16]

This component illustrates the facilities offered by the
method. The only data to be considered are the input and

Fig. 2. Shape of the 100-GHzTE01 to TE02 taper-converter.

Fig. 3. Mode coupling for the 100-GHzTE01 to TE02 taper-converter.

output modes, diameters, and slopes, the frequency, the length,
and the desired mode purity. The code then runs until a
shape satisfying these conditions is found. Thus, this method
requires only a single calculation for the design of the taper-
converter [5].

The shape (Fig. 2) and the energy transfer (Fig. 3) curves
are both regular, which is the sign of a noncritical case.
Another sign is the weak coupling to higher modes. Should
the component be much shorter, some singularities or abrupt
variations would appear that would no longer satisfy the
physical model approximations, and more energy would be
transferred to higher modes.

B. 110-GHz Asymmetric Mode Taper

This component propagates the mode from 20-mm
to 63.5-mm diameter at 110 GHz [17]. The final diameter is
more than 20 times the free-space wavelength, and the final
design is outstandingly short—350 mm. As the optimization
method does not take into account evanescent modes, the
considered modes are practically limited to those propagating
in the smaller diameter of the component. Therefore, one has
to select, among the various possible solutions, the smoother
ones which are less likely to generate higher order modes. This
was done by using penalty methods with constraints on the
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Fig. 4. Shape of the 100-GHzTE64 taper.

Fig. 5. Mode coupling for the 110-GHzTE64 taper.

shape. The program was forced to choose a shape held within
two given curves, and on the mode coupling. The program
was forced to transfer no more than 30% of the energy on
spurious modes.

A final calculation on the optimized structure, introducing
a larger number of modes, enables one to check that the
efficiency does not decrease when the number of modes
increases. The chosen solution is shown in Fig. 4 for the guide
radius and in Fig. 5 for the energy transfer curves.

C. 110 GHz to Converter

This “serpentine” converter has a constant diameter and its
curvature varies with the abscissa in one plane. This is the
condition for the generation of modes with a difference of
azimuthal index of unity. If we consider the Fourier expansion
of the deformation of the guide, the first harmonic corresponds
to the beat-wavelength between the input and the output
modes. In this case (Fig. 6), we have three periods, what
seems to be the lower limit leading to acceptable smooth
curvatures satisfying the physical-model approximations. The
99.2% computed mode purity (Fig. 7) also seems to be the
upper limit in that case. Eleven modes were taken into account:

, , , , , , , , ,
, and . The coupling to higher order modes proved

to be quite negligible.

Fig. 6. Shape of the 110-GHzTE01 to TE11 converter.

Fig. 7. Mode coupling for the 110-GHzTE01 to TE11 converter.

D. Experimental Setup

These components were measured with the following well-
known over-moded waveguides measurement techniques:
open-ended waveguide radiation patterns and-spectrometer
[18] patterns in both perpendicular and parallel polarities.

The microwave source was a Thomson TH42210 car-
cinotron delivering 1 W at 110 and 100 GHz. The detec-
tion was homodyne in the case of radiation measurements,
and heterodyne with a 10-GHz intermediate frequency signal
amplified by 30 dB in the case of the-spectrometer mea-
surements. Several intermediate tapers were designed with the
same optimization techniques in order to provide good input
mode purity at the input of the component under test.

Particular care was taken for the manufacturing of these
components, leading to -mm maximum tolerances,
either in the case of electroformed parts or by direct machining,
especially in the case of the serpentine converter where the
sometimes large curvatures required a careful programming of
the milling machine.

E. Experimental Results

The measured patterns fit the theoretical predictions.
Figs. 8–11, respectively, show the spectrometer and radiation
patterns for the (at the input) and the (at the
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Fig. 8. K-spectrometer pattern forTE01 mode at the input of the 100-GHz
taper-converter.

Fig. 9. Radiation pattern forTE01 mode at the input of the 100-GHz
taper-converter.

Fig. 10. K-spectrometer pattern forTE02 mode at the output of the
100-GHz taper-converter.

output) modes in the case of the 100-GHz taper-converter.
Taking into account the-spectrometer coupling coefficients,
the spurious modes content is ( 0.03%, 0.3%)
at the input and , 0.01%, 0.05%,

, ) at the output. Figs. 12
and 13 show the radiation patterns of the , mode at the
output of the serpentine converter.

Fig. 11. Radiation pattern forTE02 mode at the output of the 100-GHz
taper-converter.

Fig. 12. E-plane radiation pattern for the output of the 110-GHzTE01 to
TE11 converter.

Fig. 13. H-plane radiation pattern for the output of the 110-GHzTE01 to
TE11 converter.

V. CONCLUSION

An original method based on numerical optimization tech-
niques has been developed which enables the calculation
of ultrashort highly efficient multimode components. This
method has been implemented and tested for both circular and
asymmetrical modes in the case of longitudinal deformations
of radius or curvature. The results show improvement of
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components performances either for conversion efficiency or
for total length. The ohmic losses can be taken into account
and the sensitivity to mechanical errors through pseudorandom
variations of dimensions can be evaluated. The behavior of the
code is totally autonomous, and the result is generally a single
final optimized structure in the case of moderately oversized
components (transverse dimensions less than ten times the
free-space wavelength). In the case of highly oversized compo-
nents (transverse dimensions more than 20 times the free-space
wavelength), there are generally several possible solutions,
many of them being divergent with regard to the number of
considered modes. For that reason, quality constraints methods
have been developed, which allow elimination of these erratic
solutions by limiting the slopes, the energy transfer and some
other parameters. The next step of that work will concern
helical converters and lateral outputs for high power devices.
It will consist in bidimensional optimization applied to the
Mourier coupling coefficients set.
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Microondes, June 22–24, 1984.

[13] G. Dahlquist and A. Bj̈orek, Numerical Methods. New York:
Prentice-Hall, 1974.

[14] P. Henrici, Discrete Variable Methods in Ordinary Differential Equa-
tions. New York: Wiley, 1962.

[15] D. G. Luenberger,Linear and Non-Linear Programming.Reading,
MA: Addison-Wesley, 1984.

[16] P. Garin, E. Giguet, J. M. Krieg, E. Lunéville, and G. Mourier, “Ultra
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