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An Original Approach to Mode Converter
Optimum Design

Eric Luréville, Jean-Michel Krieg, and Eric Giguet

Abstract—An original method of shape optimization has been transform aZ’X,,,, mode into aTX;n,p, one (whereX and
developed to improve high-power high-frequency transmission- X represent either a TE or TM mode); 3) helical converters
lines’ performances. This method is based on the coupling Co- ha radjus of which not only depends on the longitudinal axis,
efficients equations, for which general expressions are given. . .

It makes use of numerical methods such as steepest descen{JUt also on the asimuthal a”g'e) convertifig,,,, modes mtq .
associated to adjoint state technique. The results obtained on 1'X7,,, ones; and 4) serpentine converters, where the radius is

several types of components demonstrate the pertinence of thisconstant, but the longitudinal axis is curved, which allow the

method. same kind of conversion as the previous ones. The amplitudes
Index Terms—Coupled mode analysis, optimization methods, Of the modes propagating in such structures are solutions of
transmission lines. a set of first-order differential equations. A suitable efficiency

is obtained by varying various parameters, like the slope of
the components (tapers), their length, and the amplitude and
period of their deformations (converters), to keep the level of

IGH-FREQUENCY high-level RF power is necessaryhe spurious modes as low as possible [1]-[7].

for electron cyclotron applications (plasma heating and Nevertheless, it is not always possible when using such
diagnostics) in thermonuclear fusion experiments. To gefechniques to find the optimal point in terms of efficiency
erate such a wave, gyrotron oscillators (tubes which c@n |ength. We have developed a method based on shape
deliver powers greater than 1-MW continuous wave (CW) ghtimization techniques to increase the efficiency and reduce
frequencies above 100 GHz) are the most commonly usgfé length of transmission lines—and this in an automatic way.
sources. The power then propagates to the application (tokaThe Section Il of this paper deals with the physical model
mak) through a transmission line, which must be oversized@p mode conversion, |eading to the resolution of a set of
avoid breakdowns and to minimize ohmic losses. The first gag@ifferential equations. The material of this section is partly
of the line is to transform the mode generated in the gyrotregailable in different papers [8]-[11]. We found it necessary to
cavity, usually a high-order model'Es 4, TE15 2, TE22 6, review the final results in the two cases of radius and curvature
etc.) to obtain high-power levels, into another mode mofgngitudinal deformations.
suitable for the application, like thHE;; mode propagating In the Section IIl, we detail the different techniques used to
in a corrugated waveguide and having the advantages of lgptimize the shape with regard to the conversion efficiency.
ohmic losses and of a quasi-Gaussian radiation pattern. Tiige main ideas are: 1) cubic spline representation of the
can be done through a set of passive components cali@thpe; 2) conservative Crank—Nicolson scheme to solve the
mode converters, which are actually waveguides deformggferential system; 3) cost function taking into account the
according to specific laws. Among the other components génversion efficiency and other parameters; and 4) adjoint
a transmission line, one can list tapers, allowing a changgte equations for fast computation of the gradient used in
of the line radius (e.g., to optimize the conversion from ong steepest descent algorithm.
mode to another) and bends used to change the wave directioBection IV summarizes the main experimental results ob-

of propagation. All these components must satisfy two maggined on several tested components.
criteria: they must be as efficient as possible (more than 95%),

for the useful power to be as high as possible, and they must

be as short as possible to reduce the dimensions of the set , )
“gyrotron-transmission line.” The field component$E, H) of an electromagnetic wave

The most commonly used components are: 1) smooth tapdtPagating in a circular waveguide can be written as
2) sinusoidal converters (i.e., converters where the radiusE(T 2, 0,1) _ZV'(7 £)é;(r 9)+ZV (2, Den(r, 6)
y 9 Yy - J\*~ VAN n\%» n\’»
J n

I. INTRODUCTION

Il. WALL DEFORMATIONS-COUPLING EQUATIONS

is a sinusoidal function of the longitudinal axis) which can
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The particular waves (represented by the inggxsuch as dA; o - I+ 4+ I— a—
E; = 0 are called TE modes, while those (index such as g = IR ¥ ZC” Aj ¥ ZC” A
H. = 0 are called TM modes. In the previous equations, the o+ jr . J_
scalar functiond” and [ are assumed to vary as + Zcin AT+ Zcin Ay

Vi(z, t) = Ved@t=h2) [(5 ) = [/ (@t7F=2) dAF : _
) ) — L = —jka Al +) CHAS + Zc A
and the vectors(é;, hj, é,, h,) to be normalized on the i i
(Eross-sectiorﬂ by [g éx, é5dS = [ hahydS = [g(éx x + ZC:ZA: ZCMA;
h;*])éz dS = 6y If the modes) andn represent both TE or
both TM modes, these integrals being null otherwise. dAy _ o —
The actual values of these vectors can be determined by dz = Jhady +ZC FA] ZC 4;

solving Maxwell's equationd/ x H = jweE andV x E =
—jwpH in the case where the wave propagating in the guide
is a pure mode.

1) TE Mode: Let us introduce a scalar functio®(r, )

+ Zc;pﬁ + Zc;n A

; 3 IS o i” In this set of first-order differential equationgd,*(~) repre-
defined by:A(r, 6) = =V &(r, 0) = h x &.. The condition g0 the amplitude of the forward (backward) component of

of normality of the_ electric ﬁeld on the wall Iefads %g - 0 the different modes. These amplitudes are derived froand
for r = a (whereaq is the radius of the waveguide). Using theI by the relations

normalization conditions, one can finally write
1

VZ

V=VEAT A7) L= (4t - A)

Jm (anp 15)
ﬁJnl (anp)

where i), is the pth root of J;..
2) TM Mode: We introduce the functiony(r,

cosmb

W(r, 6) =

p2 —m?2
mp with Z = —k“— for TE modes andZ = 2= for TM modes.

The indexes and; represent TE modeSandn TM modes.

8) defined The coupling coefficient between two modes is nonnull if, and

by: é(r, 6) = —V'x; fl(h 8) = ¢. x é. The value of the electric on gg theydhave thtisatlme azflmu:jhal Tﬁex Inf:hat otccurrence
field on the wall and the normalization conditions lead to epending onthe type ot modes, the coetlicients are given
Jrn (Vrnpg) .
. 1 kxj ki
where v,,,;, is the pth root of .J,,. Ch=0C5 = Fm/k—J — Fijy/ k_]
As long as the wavelength is purely cylindrical, the de- 2 2
composition given by (1) and (2) remains the same. Let us . oF — 1 dz;
now consider a slightly deformed waveguide, i.e., such as its " ~ % ~ 27, dz
radius varies withz and @, or its axisz is curved (even if
the radius is constant). Theoretically, because of the change irC;; = C/f = M/ ke + Fy hzi
the normal to the waveguide, the previously given field values i ke
are not valid. Nevertheless, if the deformations remain smooth + _ - _ _ Gin - =+ —_2¥ Gin
enough, one can consider that the wave propagating can still” ™ w \/kﬂkm in = Cin koikor
be represented as a set of TE and TM modes even if the _ , _ 1w Fy
composition varies while it propagates, that is to say that the tj tj tj 2 ¢ \/m
different modes can be coupled to each other. In this section
the coupling equations which must be taken into account |nC+ =C- = _1 E,, /& - F, /kZ_n
two particular cases, variation of the radius and of the axis o " k.n k.t
curvature will be summarized. 1 dZ,
Cp=Cf =—5—
2Zt dz
A. Variation of the Radiug
. . ) ) — I+ 1 F kzt F kzn
The coupling equations have first been developed in the par-Ctn Cin = 5 [Fnt kn + Lin Tt

ticular case where the radius depends only on the longitudinal

coordinatez. As stated in [8] and [9], in the case of smallith o azimuthal index of the modes:

variations they can be written as

PG, _tda_a®
ar_ = —jk AT + ZC*AJ’ ZC AT ’ Coedepi-a?
* oo, = Lda 20} [pE—a?
. B WTTH T G 2= 2\ = a2
+ ZCmAn ZCmAn J v J

ti(5) = Hi(iymp (pth roOt Of 7))
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Gin = 1§a2—0 Zin = jwioOin
aaz NJQ —a? Yrin = jw‘50®in
I lda  2a Zt; = jwpoOy;
YT L d 2 _ 2 Yi; = jweoOy;
" KenKo
Vu(t) = Vn(t)mp (pth root of J,,,) Zyn = jwito(—0in + On) — jZeoc (Otn + etn)
1 d .
Py = -Gy = “ Yin = jWEO(@tn - 6tn)
T adz , K Un(t)
1d 2 en(t) —
Ftn:_th:__ ¢ a0 . © a
adz i — i

Some applications require conversion of one mode into anoth gplacing the indexesj, ¢, andn, respectively, by the double

one with a different azimuthal index. This can be done throug';'%dexesw’ sv, tu, andmn, one finds the following:

a component with radial variations in bothandd. The most

commonly used deformation is given by ©ij = Oic, s
_ a 2I’LZ€l’LSb LS(I’LZG + I’LSL)
= —qj
CL(Z, 9) = aO[l + € cos (/32 - 19)] b (I’LSb - uze \/Nsu —s? \/lv%e
Cij = Cie, sv
whereqg is the mean radius andmust be equal in absolute  _ ‘/gu‘ s Vi + 13, — 25
value to the difference between the two azimuthal indexes. PO 2, — pE )22 —2\/u2, —
The coupling coefficients to be used in this case have been a 1 o
determined, particularly by Mourier [12]. Oin = Oic,mn = —7 Vo if i =0,m=1, ande =n
=0, if i=0,m=1, ande#n
B. Serpentine Converter—Morgan Coefficients _ i if i
= _amz > 2 if:£0
Another way to couple modes with different azimuthal in- (W3 = VR )V 115 =
1 .
dexes consists in the use of a so-called “serpentine” convert@r = Oy = _a 7 if t=1,5=0, andv=1u
In such a component, the radius remains constant, but the axid b 245,
of propagation is deformed. The coupling equations to be taken =0, ift=1,s=0, andv # u
into account in this case have been developed by Morgan [11]. a2 s if £ 41
The electromagnetic field of a wave propagating in such a R (NSD - Uw) /12, — 2’

guide can be calculated using the coordinates systeth w), a (v2,, +v2,)

wherew is the distance measured along the axis &nd) Ot = Oy, mn = —atngﬁ

the polar coordinates in a plane perpendiculamt@nd the a x:vmn tu

origin of which is on this axis. In the following, the radius of €¢tn = Ctu, mn = 2at"5m

curvature ofw will be notedb. mn Tt
Developing Maxwell's equations in this coordinate systefhare

finally leads [in the particular case where the curvature is small

(i.e., 3 cost < ¢ < 1)] to the following first-order coupling ‘ - V2
ij = Qie, 50 = V2,
equatlons(andj still represent TE mode,andn TM modes): i £ — 0 and lorie 1 ands— 0
1T = S= 1= S=
aV; .
aw:ZZUIJJFZZi“I" =1, if i£20, ands=¢+1ori#1
/ ™ ands=1¢—1
gf; = ZY;jvj + ZYinVn =0, otherwise
i n Cin = Qe mn = 1, ifm=t+1lori#landm=1¢-1
g .
a_vt = ZZUIJ + sz_rn =0, otherwise
w ; n Qtj = Q50 = 1, if s=t—lort#A0ands=1¢t+1
T, .
% =Y YiVi+ Y YV =0,  otherwise
w j n Ot = gy, mn = 1, t#£0, andm =t+ lor
The coupling coefficients are given by the following: t#landm=t-1
Zij = jwpo(©i; — 8;;) =0, otherwise.
Yij = jweo(—0ij + O45) — o L(8;5 + eiz) Using these coupling equations, one can fine the equations
NZ(J) Jeko in AT and A~ using the relationd’ = VZ(A* + A~) and

Kcz(]) - 1 = \/—(A—i— A~ )
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Il. OPTIMUM DESIGN OF WAVEGUIDES ho # hp for tapers, andhy = hr = 0 for serpentine
waveguides) and ensure that two successive guides will fit
A. A Class of Optimum Design Problem together. The treatment of these constraints will be detailed in

As we have seen in the previous section, the mode-couplim% nextdslectlon. i i .
model of electromagnetic waves in axisymetric guides or S€CONdly. W€ consider some quality constraints:
“serpentine” guides leads to a one-dimensional differential  on the mode exchange energy:
system that we state in general form as follows: ﬁ(a:) e < hz) < E(a:) 4ot z €0, I

LA@)=C(h,2)A(x),  w€0, L] 3 o | |
AT(0) = Ay (3) where% is a given function and+, = are plus and minus
A(L)=0 () limits on the design parametér In some circumstances, these

constraints do not allow the guide to be to much oversized.

where L is the length of the guide; is the propagation axis on the mode exchange energy:

A= @f ) 4@ 2 Ef (@) or |[4;(2)]? S Bf (2), w0, L]

whereE, Ejr are minus and plus energy limits for the mode

j. Such a constraint allows a limit on the generation or the
tenuation of the modg.

One can treat these quality constraints by an exterior penalty
_[ctt e method of the cost function. For instance, to take the first
- {C—Jf C“} quality constraintgh > h + ¢~) into account, the following
Ipenalized cost function is introduced:

AT (respectively, A~) being the complex vector of the
amplitudes of the forward modes (respectively, backwal
modes)

C*t+, C——, C~*, CT~ are, respectively, the matrices o
coupling coefficients between forward and backward Waveﬁ,
the real functioni(z) is the design parameter of the guide”®
(for instanceh is the radius of the section of an axisymetric . ) ]
guide or the curvature of the axis of a serpentine guidg), Where the functiorfu]2 is defined by

is the input vector mode amplitudes. {u27 if <0

(h) = J(h)—i—a/OL [h(z)—h(x)—€]? dr, with a > 0

The output condition (4) means that backward modes do [u]2 = 0. ifu>0
not come from right infinity. For the sake of simplicity, in this ’ -
paper, we neglect the effects of backward modes. Therefor®r the constraint to work well, the: coefficient must be
we assumeA = A+, C = C** and we deal with the model chosen carefully.
(3) in the following. In the following, in order to simplify this paper, we will
Knowing the input modeé\,, we want to generate at= L. omit these quality constraints. The dependence of the cou-
only one given mode (callech). As the matrixC is anti- pling matrices on the design parameter is generally strongly
Hermitian (C* = —C, where C* represents the conjugatednonlinear. This means that the maximization problem (5) is
matrix of C), the system (3) is conservative, i.e., not convex. Thus, no result of existence and uniqueness of (5)
can be derived. The only result we can state is related to the
existence of local maxima characterized by the Euler condition

where|| || is the norm on the complex space. _
Let us now introduce the maximization problem

|[A(z)]] = [|Aoll,  foreveryz € [0, L]

maxperJ(h) (5) B. Approximated Optimum Design Problem

where J(h) = |An(L)[? is the cost functionA,, represents The design parametér and (3) have to be discretized. We

the mth component of the vectoA and R is the set of US€ 2 cubic spline approximation of the design parameter and
constraints fulfilled by the design functidn a modified Crank—Nicolson scheme to discretize the equation.

It is straightforward to interpret this problem in terms of a L€t us consider the following cubic spline approximation on
maximization of energy efficiency, and the best one is reach@d@"d Of PoINts(zx)k=o, x SUCh asro = 0 andxy = Lt
when

K
An(L) = [ A0 ) = 2 (@01, () ™

We take two kinds of constraints into account. First of all/vhere ()

structural constraints are expressed as follows: indicatrix function in the interval (i.e., the function defined
{ h(0) = ho, h(L) = hg, ©) by xr(z) = 1if z € I;= 0 otherwise).
R'(0) = 0, R'(L) = 0. From spline theory [13], there is an unique spline function
€ C?([0, L)) satisfying the boundary conditions

is a cubic polynomial function ang; is the

. . . . -
These constraints specify geometric properties of guides
(for instance, we havé,, = hj for axisymetric converters,  hy(zx) =hi k=0, K and hl(zo) = h(zx) =0.
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Therefore, to take the constraints given by (6) into account,Let us introduce the adjoint state vectdr solution of the
it is sufficient to choose as the unknown parameter the rdallowing backward differential system:

vector {d%z — _CH)Z,  Vre)o, L
H = (hy, he, -, hx_1) Z(L)=2R,,

associated to the spline function given by (7). This choiclith Rm - (0,---,0, A (L), Ov"'v(_))t' ) )
allows elimination of (6). It is of interest to note that the 12King into account the two previous differential systems,
function H — h, is linear. the equality

The standard Crank-Nicolson scheme [14] is not conservg-L s ;4
tive. Thus, we use the following modified scheme on a regulg <%Wk7 Z) dz
grid (zn)n=0, ; With z,, = nAz:

(C"'H + C")(A"'H + A"), = —/0 <Wk, %Z) dz + (Wk(L), Z(L))

r
0

AnTL_AN _1
o 0,N-1 (8
n=0,N—
A= A, leads to
L
with C* = C(hs(zy), ©n). dn, J(H) = Real / (01, CH)A(x), Z(z)) da:].
The scheme (8) is conservative, implicit, unconditionally 0

stable and of second order. Because of the oscillating solutiony js of interest to note that the gradient evaluation requires

of (3), the conservation of the scheme appears to be essenfigly one resolution of a backward differential system. This

With these discretizations, the approximated optimum desig,st pe compared with th@ — 1) resolutions of the forward
problem has the following form: differential system inwj.

maxH € RK_lj(H), with J(H) = |Af,\; 2 (9) In the discrete case, similar, but more intricate calculations
lead to
and becomes a standard finite dimension maximization prob- N
lem. Op, J(H) = Real [ Y (A", &, (C" + C*~1)*Z"
n=1

C. Maximization Algorithms
mieaTon ~9 o +0n, (CH 4 Oz
The finite dimensional maximization problem (9) does not

have any constraints. Thus, classical algorithms of ascent like
the steepest ascent or Polak—Ribiere method [15] may be ugggh z¥+1 = 0, Z! = 0 andZ", n = 2, N given by the
to find local maxima of the cost functios characterized by: adjoint scheme

VJ(H) = 0. For instance, the steepest ascent algorithm is

Zn_AanJrl _ i[(cn—i—l + Cn)*zn-l—l

HO given (10) +(cn—1 + Cn)*an n=2,N-1
Hrtl = H?P + pzov‘](HP)7 p>0 ZN %(CN + CN+1)zN +2R,,
wherep? > 0 is a step of ascent which is estimated by classicahereR,,, = (0,---, AY,..-,0)*. It appears that the discrete
rules like dichotomy or the Goldstein method [15]. adjoint equation is not an obvious discretization of the contin-

Remark: More efficient algorithms like quasi-Newtonuous one. The derivatives,, C" are easy to obtain because

methods (e.g., BFGS methods [15]) are not recommendg@ spline operatoH — h,(x,) is linear and the dependence
because of the strong nonconvexity of the problem. of C™ on h, is explicit.

The key point of optimization computation is the evaluation
of the gradient. To make it as fast as possible, we use the wejl- some Remarks on the Method
known method based on the adjoint state. Let us explain it in . o
J P The strong nonconvexity of the cost functidnis illustrated

the continuous case, which is less intricate than the discrﬁtle':i 1 showina its variation function of th )
one. First of all, we notéV,, = 8, A the derivative ofA g. 1 showing its variations as a function of the sfem

versus thekth design parameter. It is obvious th#; is a a given direction

solution of the following differential system: f(p) = J(H = pVJ(H)).
{%Wk = CH)Wy + 9, C(H)A, vz €]0, L] One can see many maxima. Thus, there is no guarantee that
Wi(0) =0. the ascent method (10) gives a good solution to the problem

(9), that is to say, a solution with the best possible efficiency.
Nevertheless, numerical experiments show that in most
A, J(H) = 2Real (8}, Am(L), Am(L)) cases, the solution is very good since the initial paranidter
does not privilege any situation. Moreover, as the function
where (u, v) represents the Hermitian product betweed oscillates less and less since the dimension of the design
u andw. parameter decreases, a continuation method based on the

Moreover, we have
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Fig. 2. Shape of the 100-GHEEq; to TEy. taper-converter.

-0.6-

Fig. 1. Nonconvexity of the cost functios.

1.00

TEC!
TABLE | \~—\ 2

—~ 075
Frequency Mode Diameter Length Mode purity ‘;
(GHz) (mim) (rmim) %) 3
Taper- 100 TE, to TEg, | 381 to 27.8 550 99.8 % 0.50 N
converter £
2
Taper 110 TE 63.51t0'20 350 99 g
P = Z 025
Converter 110 TE, to TE,, 20 900 99,2 g ’\/
TE04
5} /_/
0.00
0 100 200 300 400 500

increase of the spline number of points allows a very good
optimal solution in any realistic case. In order to speed up the abscissa (mm)
numerical method, it is alsa pQSSIble t.o mc.rease the numq:elgr. 3. Mode coupling for the 100-GHZEq to TEq» taper-converter.
of modes (up to the cutoff) during the iterative process.

In this section, we have described the main ideas which

have ‘?W”'bmed to m_ake an e_ffect|ve computational SOftwaéﬁtput modes, diameters, and slopes, the frequency, the length,
of optimized waveguides. This software allows us to tal

The shape (Fig. 2) and the energy transfer (Fig. 3) curves
are both regular, which is the sign of a noncritical case.
Another sign is the weak coupling to higher modes. Should

Three components have been designed and tested to cHag-component be much shorter, some singularities or abrupt
acterize the operability of this method, in the various casegariations would appear that would no longer satisfy the
corresponding to the different coupling coefficients sets (spbysical model approximations, and more energy would be
Table I). In the case of radius variations (Unger coefficientdyansferred to higher modes.
aTEq, to TEy; mode converter, tapering from 27.8- to 38.1-

mm diameter was designed to work at 100 GHz with 99.8% &f. 110-GHz Asymmetric Mode Taper

mode purity. In the case of asymmetrical modes, an uItrashort-l—hiS component propagates tHeEg, mode from 20-mm
TEq4 waveguide, tapering from 63.5- to 20-mm-diameter tapgf g3 5. mm diameter at 110 GHz [17]. The final diameter is

was designed for operation at 110_G_HZ with 99% of mo ore than 20 times the free-space wavelength, and the final
purity. In the case of Morgan Coeff|C|ents,jaE01 to TEy design is outstandingly short—350 mm. As the optimization
mode 20-mm-d!ameter converter was designed at 110 GRthod does not take into account evanescent modes, the
for a mode purity of 99.2%. considered modes are practically limited to those propagating
in the smaller diameter of the component. Therefore, one has
A. 100-GHz Taper-Converter [16] to select, among the various possible solutions, the smoother
This component illustrates the facilities offered by thenes which are less likely to generate higher order modes. This
method. The only data to be considered are the input awds done by using penalty methods with constraints on the

IV. EXPERIMENTAL RESULTS
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Fig. 5. Mode coupling for the 110-GHEEe. taper. Fig. 7. Mode coupling for the 110-GHEEq to TE converter.

shape. The program was forced to choose a shape held within ]

two given curves, and on the mode coupling. The prograkh Experimental Setup

was forced to transfer no more than 30% of the energy onThese components were measured with the following well-

spurious modes. known over-moded waveguides measurement techniques:
A final calculation on the optimized structure, introducingpen-ended waveguide radiation patterns argpectrometer

a larger number of modes, enables one to check that {i8] patterns in both perpendicular and parallel polarities.

efficiency does not decrease when the number of modesThe microwave source was a Thomson TH42210 car-

increases. The chosen solution is shown in Fig. 4 for the guidimotron delivering 1 W at 110 and 100 GHz. The detec-

radius and in Fig. 5 for the energy transfer curves. tion was homodyne in the case of radiation measurements,
and heterodyne with a 10-GHz intermediate frequency signal
C. 110 GHzTEq; to TE;; Converter amplified by 30 dB in the case of thespectrometer mea-

This “serpentine” converter has a constant diameter and ﬁérement_s. _Sev_eral interr_nediat_e tapers were d_esigned W.ith the
curvature varies with the abscissa in one plane. This is thame optl_m|zat|on 'Fechnlques in order to provide good input
condition for the generation of modes with a difference dpode purlty at the input of the component under_ test.
azimuthal index of unity. If we consider the Fourier expansion Particular care was taken for the manufactunng of these
of the deformation of the guide, the first harmonic corresponagmpo,nems’ leading te-/ — 0.01-mm maximum tolerancgs_,
to the beat-wavelength between the input and the out;ﬁﬁher,'nthe_ case of electroformed part; or by direct machining,
modes. In this case (Fig. 6), we have three periods, Wr%ﬁpeqally in the case of the se_rpentlne converter Wher_e the
seems to be the lower limit leading to acceptable Smooﬁgmet}mes large _curvatures required a careful programming of
curvatures satisfying the physical-model approximations. TH& milling machine.

99.2% computed mode purity (Fig. 7) also seems to be the )

upper limit in that case. Eleven modes were taken into accouft: EXPerimental Results

TEo1, TE11, TEq12, TEs(, TE9s, TE3;, TM11, TMis, TM5q, The measured patterns fit the theoretical predictions.
TMs2, andTM3;. The coupling to higher order modes provedrigs. 8-11, respectively, show the spectrometer and radiation
to be quite negligible. patterns for theT'Eq; (at the input) and thél'Egy, (at the
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output) modes in the case of the 100-GHz taper-converter. V. CONCLUSION
Taking into account thé-spectrometer coupling coefficients, An original method based on numerical optimization tech-
the spurious modes content i§Nlo; 0.03%, TM;1; 0.3%) niques has been developed which enables the calculation
at the input andl'Ey; < 0.2%, TE3; 0.01%, TM;, 0.05%, of ultrashort highly efficient multimode components. This
TMo1 < 0.01%, TMg2 < 0.01%) at the output. Figs. 12 method has been implemented and tested for both circular and
and 13 show the radiation patterns of th&;;, mode at the asymmetrical modes in the case of longitudinal deformations
output of the serpentine converter. of radius or curvature. The results show improvement of
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components performances either for conversion efficiency @n] s. P. Morgan, “Theory of curved circular waveguide containing an

for total length. The ohmic losses can be taken into account rhomogeneous dielectricBell Syst. Tech. J.pp. 12091251, Sept.
and the sensitivity to mechanical errors through pseudorand@i¥ . mourier, G. Jendrzejczak, and E. Jedar, “Convertisseurs de modes en

variations of dimensions can be evaluated. The behavior of the guides d’'ondes circulaires surdimensiésia 100 GHz,"J. Nationales
code is totally autonomous, and the result is generally a singﬁi Microondes June 22-24, 1984,

. .. . . ] G. Dahlquist and A. Bjrek, Numerical Methods. New York:
final optimized structure in the case of moderately oversiz Prentice-Hall, 1974.

components (transverse dimensions less than ten times [ P. Henrici, Discrete Variable Methods in Ordinary Differential Equa-

: : tions. New York: Wiley, 1962.
free-space wavelength). In the case of highly oversized compgs; "G [ yenberger Linear and Non-Linear Programming.Reading,

nents (transverse dimensions more than 20 times the free-spacemA: Addison-Wesley, 1984.

wavelength), there are generally several possible solutiofi$] P- Garin, E. Giguet, J. M. Krieg, E. Léwille, and G. Mourier, *Ultra
compact taper mode converter design,” presented aPtbe. 15th Int.

many of them being divergent with regz_ard to the _number of  Conf. Infrared Millimeter WavesOrlando, FL, 1990.
considered modes. For that reason, quality constraints meth@id$ J. M. Krieg, E. Giguet, A. Dubrovin, P. Garin, and G. Mourier, “First
have been developed, which allow elimination of these erratic ~esults on a 110 GHz evacuated transmission line,” presentedbat

. L 17th Int. Conf. Infrared Millimeter Wave®asadena, CA, 1992.
solutions by limiting the slopes, the energy transfer and SOM®] w. Kasparek and G. A. Miler, “The wavenumber spectrometer—An

other parameters. The next step of that work will concern alternative to the directional coupler for multimode analysis in oversized
helical converters and lateral outputs for high power devices. ‘Vaveguides,nt. J. Electron, vol. 64, no. 1, pp. 5-20, 1988.

It will consist in bidimensional optimization applied to the

Mourier coupling coefficients set.
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